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Abstract

Faults inevitably become non-planar because of how they grow and how they are a�ected during slip by mechanical
heterogeneities inherent in the earth. Some faults acquire a non-planar geometry because of non-uniform tectonic deformation

or because they grow by the linkage of originally discontinuous structures. However, even faults that are originally planar are
unlikely to remain so. Elastic analyses show that as a fault slips, it rotates with the surrounding rock. It rotates uniformly and
remains planar if: (a) the shear stress drop along the fault is uniform, (b) the rock surrounding the fault is uniform and

isotropic, and (c) the far-®eld stress state is uniform. Variation in stress drop or in fault strength, heterogeneity in host-rock
sti�ness, and interaction with other faults cause non-uniform rotation along a fault that slips, and the fault geometry deforms.
Mechanical and geometrical heterogeneities are inherent in the earth, so all natural faults will tend to become non-planar to
some degree as they slip, even if they were initially planar. Information on fault shape can illuminate the mechanics of faulting,

and, in conjunction with slip data, help locate contacts between rock bodies of di�erent elastic moduli. In uniform isotropic
rocks, fault curvature is proportional to the rate at which the stress drop varies as a function of position along a fault, whereas
the slip pro®le re¯ects a weighted average of the stress drop. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The geometry of a fault provides a fundamental
control on its mechanical behavior and re¯ects the
processes by which the fault grew. Although faults
commonly are idealized as planar, most in fact are
not. Faults at all scales contain eÂ chelon segments, have
bends, or are curved or warped to some degree (e.g.
Sylvester, 1988). Perhaps the most famous example is
the `Big Bend' of the San Andreas fault, a plate
boundary several hundred kilometers long. Wallace
and Morris (1986) discussed several examples of non-
planar faults exposed in three dimensions within mines
in Idaho; these faults extend for several kilometers or
more. Non-planar fault geometries also appear at the
scale of outcrops (e.g. Fig. 1) for faults with trace
lengths of less than 100 m (e.g. Segall and Pollard,
1983; Martel et al., 1988; Martel, 1990; Swanson,
1990; BuÈ rgmann and Pollard, 1994). This paper dis-

cusses why faults assume non-planar geometries and
shows how curved fault geometries can be analyzed.

Non-planar fault geometries control a variety of im-
portant geologic processes. Earthquakes commonly
nucleate or are arrested at bends or steps along faults
(Schwartz and Coppersmith, 1986). Sedimentary basins
commonly form at bends along faults, ranging in area
from sag ponds of several hundred square meters to
depressions of several hundred square kilometers
(Aydin and Nur, 1982; Sylvester, 1988). Clusters of
secondary fractures commonly form at bends or steps
(e.g. Woodcock and Fischer, 1986). These fracture
clusters probably account for why fault steps are sites
for ¯uid ¯ow as manifest by ore bodies and geother-
mal ®elds (Sibson, 1987). A more complete explanation
of how faults develop non-planar geometries thus
should be of both practical and academic interest.

Non-planar fault geometries arise for a variety of
reasons. Some faults have deformed in response to
either regional (i.e. tectonic) or local deformation, such
as that associated with a nearby intrusion. This defor-
mation need not be associated with fault slip. It can
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occur either in the period when the fault slips or after
slip has ceased. A fault could also have its geometry
changed by being o�set by another fault. Other
geometry changes arise solely as a result of hetero-
geneous mechanical conditions along a fault; these
geometry changes are the focus here.

Some faults become non-planar as they grow by
linkage of pre-existing, discontinuous, non-coplanar
structures (Segall and Pollard, 1980, 1983; Rispoli,
1981; Martel et al., 1988; Cruikshank et al., 1991;
BuÈ rgmann and Pollard, 1994; Cruikshank and Aydin,
1994; Willemse et al., 1997). Whether faults generally
grow by linkage or instead propagate as shear frac-
tures is a matter of some debate (e.g. Petit and
Barquins, 1988). Shear fractures that appear to propa-
gate in-plane have been produced in laboratory exper-
iments (e.g. Cox and Scholz, 1988a,b). Scholz and his
co-workers (e.g. Cowie and Scholz, 1992a,b; Scholz et
al., 1993; Vermilye and Scholz, 1998) have presented
analyses consistent with faults propagating as planar
shear fractures. The analyses here focus on whether a
fault could become non-planar even if it did not grow
by the linkage of non-coplanar structures.

Analytical and numerical solutions from elasticity
theory illustrate how fault geometry is distorted during
slip. These solutions are based on in®nitesimal strain
theory and apply most rigorously to the initial distor-
tion of fault geometry. Non-elastic ®nite deformation
associated with faulting (e.g. BuÈ rgmann and Pollard,
1994) cannot be quanti®ed well with these analyses.
Nonetheless, the e�ects identi®ed might be ampli®ed
as non-elastic deformation builds. The analyses show
that mechanical and geometrical heterogeneities inevi-
tably cause faults to become distorted as they slip. The
analyses here parallel and complement those of
BuÈ rgmann et al. (1994) in their study of e�ects of
mechanical and geometric factors on fault slip distri-
butions.

An example of kinked small faults from the Mount
Abbot quadrangle (Fig. 1) allows tests of the theoreti-
cal predictions. The ®rst analysis serves as a reference;
it shows how fault geometry is a�ected by slip in a
uniform material along a fault of uniform strength (or
stress drop) where the stress ®eld far from the fault
also is uniform. Examinations of non-uniform stress
drop, fault interaction, and heterogeneity in host rock
sti�ness follow. Each of these three sections discusses
how various mechanical factors jointly a�ect slip dis-
tribution and fault geometry.

2. Kinked faults of the Mount Abbot quadrangle

Monoclinal kink bands de®ned by kinked left-lateral
faults (e.g. Fig. 1) occur in several places in the Mount
Abbot quadrangle (Segall and Pollard, 1983; Davies
and Pollard, 1986; Martel et al., 1988). These kinks
have nearly vertical fold axes and develop where nu-
merous short faults parallel a few much longer faults.
The sense of kinking is conjugate to that of the slip
across the faults (Fig. 1). Almost all the kinks ident-
i®ed to date occur near or along dikes that strike at
nearly right angles to the faults. The localized nature
of the kinks and their small size indicate that they
form as a result of localized heterogeneities, not
regional deformation gradients.

Fig. 1. Map of kinked left lateral faults, aplitic dikes (dark shading),

and NNW-striking joints from an outcrop near the Hilgard Branch

of Bear Creek in the Mount Abbot quadrangle, California.

Numerals denote left-lateral separation in cm of dike margin.

C=covered area. F=foliation. The bearing to Mount Hilgard is 698
and the distance is 3.4 km.

Fig. 2. Two-dimensional mode II fault and reference frame. The

y-axis is perpendicular to the fault. The x-axis parallels the short, in-

plane dimension of the fault. The z-axis axis parallels the in®nite

dimension of the fault (i.e. it is out of the page). Positions near the

fault are in terms of the complex number z � x� iy.
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3. Elementary models

The model of an isolated two-dimensional fault in a
homogeneous, isotropic, isothermal, linear elastic
material serves as a reference of comparison for more
complicated fault models. The term `fault' is used
rather than `model fault' henceforth for the sake of
brevity. The fault is perpendicular to the y-axis and
extends an in®nite direction along the z-axis (Fig. 2).
The fault is represented by a cut of length 2a that
extends along the x-axis from x � ÿa to x � �a (Fig.
2 inset). The regional stress ®eld far from the fault is
uniform and permits slip parallel to the x-axis.
Displacements are con®ned to the x,y-plane (i.e. plane
strain applies).

Two methods are used here for calculating displace-
ments along a fault. Analytical solutions use
Westergaard stress functions (Westergaard, 1939; Tada
et al., 1973; BuÈ rgmann et al., 1994; Martel, 1997).
Along the fault, where y goes to zero, the displace-
ments depend only on the stress function �Z . The com-
ponent of displacement perpendicular to the fault is uy,
and that parallel to the fault is ux. According to Tada
et al. (1973), displacements at the fault walls are:

uy� y � 0� � ÿ�1ÿ 2n�
2G

Re �Z , �1a�

ux� y � 0�� � �1ÿ n�
G

Im �Z , �1b�

where G is the shear modulus, n is Poisson's ratio, and
Re and Im refer to the respective real and imaginary
parts of the stress function �Z . The other method used
for calculating displacements is boundary element
analysis (e.g. Crouch and Star®eld, 1983), a numerical
method. The boundary element solutions are used for
cases not amenable to treatment with stress functions.
They also are used to check analytical solutions of
Tada et al. (1973) because some of those solutions are
in error.

This manuscript focuses on the distortion of fault
geometry. Displacement of a fault di�ers entirely from
the relative displacement (i.e. slip) across a fault or the
displacement ux at the fault walls. Slip across a fault,
Dux, equals ux� y � 0�� ÿ ux� y � 0ÿ�. For the sym-
metric cases considered here Dux � 2ux� y � 0��. On a
fault, ux� y � 0� is zero; slip does not cause a fault to
lengthen or shorten in the x-direction. In contrast,
uy� y � 0� generally will not be zero along a fault; this
displacement component dictates how fault geometry
is distorted out of plane.

3.1. Uniform stress drop along a two-dimensional fault

In a uniform, isotropic material under uniform far-

®eld stresses, the deformation also is uniform. Hence,
a passive marker that was planar prior to deformation
will remain planar afterwards. In contrast, defor-
mation associated with fault slip generally is not uni-
form and can result in changes in fault shape.
Displacements associated with fault slip can be calcu-
lated directly from the shear stress drop Dt associated
with slip, where Dt � t1 ÿ tfault (Pollard and Segall,
1987). The term t fault is the shear stress, or frictional
strength, on the fault after sliding, and t1 is the far-
®eld shear stress parallel to the fault. If t fault drops
below t1, then the fault will slip. The stress drop Dt
is positive here for right-lateral slip. The Westergaard
stress function �Z for a uniform stress drop is a func-
tion of position z (Tada et al., 1973):

�Z �z� � Dt
� ���������������

z2 ÿ a2
p

ÿ z
	
: �2�

The term z equals x� iy (Fig. 2). Along the fault, z

Fig. 3. Pro®les of normalized (a) fault-normal displacement (uy=Du�x)
and (b) slip (Dux=Du�x) vs position (x/a ) along a fault with a stepped

shear stress distribution (dashed line). The shear stress drop along

the interval b<x<c is Dt, and the shear stress drop along the remain-

der of the fault is zero. Here and in all subsequent graphs, the pro-

®les are normalized by the maximum value of slip for an isolated

fault with a uniform stress drop (Du�x), lines mark analytical sol-

utions, solid lines mark the reference case of a uniform stress drop,

dots or stars mark numerical solutions, and Poisson's ratio equals

0.25.
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equals x and is purely real, and �p x2 ÿ a2� is purely
imaginary. As a result, Re �Z � �ÿDt��x� and
Im �Z � Dt �p a2 ÿ x2�. Eqs. (1a) and (1b) thus yield the
following expressions for uy and ux at y � 0�:

uy � Dt�1ÿ 2n�
2G

x, �3a�

ux � Dt�1ÿ n�
G

����������������
a2 ÿ x2
p

: �3b�

The maximum slip, Du�x, occurs at x � 0. For a fault
of half-length a in a uniform isotropic material,
Du�x � 2�1ÿ n��Dt=G �a; this value is used as a scaling
factor in the ®gures of this paper. Eq. (3a) shows that
uy scales with distance along the x-axis from the ori-
gin. The magnitude of uy is largest near the fault ends
and smallest at the middle, reversing sign across the
fault center (Fig. 3a, solid line). The fault thus rotates
from its orientation prior to slip. A right-lateral fault
rotates counterclockwise, and a left-lateral fault rotates
clockwise. The rotation angle o is:

o � tanÿ1
�

duy
dx

�
: �4�

Substituting Eq. (3a) into Eq. (4) yields

o � tanÿ1
�
Dt
2G
�1ÿ 2n�

�
: �5�

Eq. (5) shows that the rotation angle o is constant
along a fault with a uniform stress drop and is inde-
pendent of fault length. Thus if a fault were planar
before it slips, then it will remain so after it slips pro-
vided the stress drop is uniform along the fault. Note
that the fault rotates with the surrounding rock, not
through it.

The rotation of a fault as a result of slip is not intui-
tive, but trilateration and GPS displacement data col-
lected before and after the 1992 Landers earthquake
show that it does occur (e.g. Hudnut et al., 1994). For
typical earthquakes the shear stress drop along a fault
is 101±102 MPa (Hanks, 1977). Assuming a host rock
shear modulus of 3 � 104 MPa (Hatheway and
Kiersch, 1989) and a Poisson's ratio of 0.25, Eq. (5)
yields a rotation o of approximately 10ÿ4±10ÿ3 rad for
a single earthquake with a uniform stress drop. The
smaller rotation for Landers of about 2 mrad probably
re¯ects in part the ®nite height of the fault.

3.2. Uniform stress drop along a penny-shaped fault

Westman (1965) solved for the three-dimensional
displacements at the walls of a penny-shaped model
fault of radius r � a in an in®nite elastic body. The
fault-normal displacement on the fault is

uy�jrjRa, y � 0� � Dt
2G

�1ÿ 2n�
2ÿ n

x: �6�

The associated rotation angle o is:

openny � tanÿ1
�
Dt
2G

�1ÿ 2n�
2ÿ n

�
: �7�

This three-dimensional solution resembles the two-
dimensional one in some key ways. The axis of ro-
tation is in the plane of the fault, intersects the fault
center, and is perpendicular to the direction of slip.
The predicted rotation again is uniform. For a stress
drop that is small relative to G, the terms in braces in
Eqs. (5) and (7) yield the rotation angle in radians;
they di�er by a factor of (2ÿ n). The rotation amount
is smaller for the penny-shaped fault, which is of ®nite
size. The uniform rotation along a two-dimensional
fault thus is a consequence of its uniform stress drop
rather than its two-dimensional geometry.

4. Single faults with non-uniform stress drops

Fault strength and the stress drop accompanying
fault slip are likely to be non-uniform for a variety of
reasons. The rock along a fault commonly varies, as
does the material within it. Substantial variations in
the normal stress perpendicular to a fault (Martin and
Simmons, 1993) and variations in the coe�cient of
friction along a fault (Cooke, 1997) cause the frictional
resistance to slip to be non-uniform. Cowie and Scholz
(1992b) noted that the resistance to slip might increase
towards the tip of a propagating fault. Finally, defor-
mation near the fault tip and an associated increase in
resistance to slip is needed to prevent a physically
implausible singularity in stresses at the fault tip
(Martel, 1997). For all these reasons the stress drop
during slip along a fault should vary.

The three shear strength distributions of BuÈ rgmann
et al. (1994) are examined now to see their e�ect on
the shape of a two-dimensional fault. These are: (a) a
step function; (b) a linear variation along the length of
a fault; and (c) a linear increase from the fault center
to the fault ends. These solutions can be combined to
investigate a variety of plausible stress drop distri-
butions. In each case the far-®eld shear stress parallel
to the fault is held uniform. All subsequent ®gures
compare slip distributions and fault shapes against
those of the reference model.

4.1. Step function in the stress drop

Suppose that the shear stress along a fault drops to
a new constant level over the interval
ÿaRb<x<cR� a. This might occur because of uni-
form conditions along the fault there. Elsewhere along
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the fault (ÿaRx<b and c<xR� a) Dt is zero. The ex-
pression for uy along the fault in this case is:

uy�ÿaRx<b� � ÿDt
2G
�1ÿ 2n�

�
cÿ b

2

�
, �8a�

uy�b<x<c� � Dt
2G
�1ÿ 2n�

�
xÿ b� c

2

�
, �8b�

uy�c<xRa� � Dt
2G
�1ÿ 2n�

�
cÿ b

2

�
: �8c�

The right sides of Eqs. (8a) and (8c) contain only con-
stants, whereas the right side of Eq. (8b) varies linearly
with x. As Fig. 3 shows, each section of the fault trace
is straight after the fault slips, but the orientations of
the segments di�er. The sections of the fault with no
shear stress drop are displaced uniformly relative to
each other and maintain their pre-slip orientation,
whereas the orientation changes where the shear stress
dropped (b<x<c). The fault is bent at x � b and
x � c. Fault-end bends have been documented
(Martel, 1997), and a step in the stress drop provides
an explanation for how they could occur.

Eq. (5) gives the rotation angle for the interval
b<x<c where the stress drop occurred, and also the
di�erence in orientation of adjacent bent segments. Eq.
(5) shows that the rotation angle depends on the stress
drop, not on the length of the interval where the stress
drop occurs. Note also that the straightness of a por-
tion of a fault trace provides evidence neither for nor
against a rotation or a stress drop.

The slip along the fault for this case is:

Dux � 2Dt
pG
�1ÿ n�

"
�cÿ x�coshÿ1

a2 ÿ cx

ajxÿ cj

ÿ �bÿ x�coshÿ1
a2 ÿ bx

ajxÿ bj

�
�

sinÿ1
c

a
ÿ sinÿ1

b

a

� ����������������
a2 ÿ x2
p

#
:

�9�

As Fig. 3(b) shows, slip occurs everywhere along the
fault, even where no shear stress drop occurred (see
also BuÈ rgmann et al., 1994). For a uniform shear stress
drop along the fault, an elliptical slip distribution
results. For a stepped stress drop distribution, the slip
pro®le is helmet-shaped. In¯ection points in the slip
pro®le, bends in the fault, and the steps in the shear
stress drop distribution all coincide (Fig. 3).

4.2. Linearly varying stress drop

In many situations the stresses along a fault might

vary continuously rather than in a series of steps.
BuÈ rgmann et al. (1994) considered the possibility that
the resistance to slip varied linearly from one end to
another. The simplest such distribution is a linear
stress drop of the form Dt � kx=a where the shear
stress rises on one half of the fault and drops on the
other. This special case of a linear distribution would
have few counterparts in nature; it yields a reversal in
the sense of slip across the center of the fault. It is
used here primarily for illustrative purposes.

For this case the fault trace geometry becomes
bowed (Fig. 4a). Rotation of the fault increases
towards its ends. The sign of the curvature here is con-
stant along the fault. The shape of the fault trace is
described by the equation of a parabola:

uy � Dt
4G
�1ÿ 2n�

"�
x

a

�2

ÿ1
2

#
a: �10a�

The distribution of slip is (BuÈ rgmann et al., 1994):

Dux � ÿDt
G
�1ÿ n�

��
x

a

� ����������������
a2 ÿ x2
p �

: �10b�

Fig. 4. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) for a linear shear stress change (Dt � kx=a)
and a constant stress drop (Dt � k).
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The sense of slip does reverse across the center of the
fault (Fig. 4b).

4.3. Symmetric linear stress drop

We now consider that the resistance to slip increases
linearly from the center of a fault towards its ends.
This scenario is motivated in part by the work of
Cowie and Scholz (1992a,b), who considered the
propagation of a fault as an in-plane shear fracture.
They envisioned the resistance to slip increasing
towards the fault tip where the rock surrounding the
fault becomes less broken and more resistant to shear
failure. The stress drop is Dt � k�1ÿ jx=aj�, where the
stress drop Dt is a maximum at the fault center and
decreases to zero at the fault ends. The sense of slip is
the same along the fault. The ends of the fault will not
rotate because the stress drop there is zero.
Interestingly, the two halves of the fault trace again
have parabolic forms (Fig. 5a) described by the follow-
ing equation:

uy � Dt
2G
�1ÿ 2n�

�
x

a

�
1ÿ jxj

2a

��
a: �11a�

The shape of the fault trace after slip is sigmoidal, not
planar, and the sign of curvature changes from one
half of the fault to the other. Faults over a broad
range of scale have trace geometries like this (e.g.
Tchalenko and Ambraseys, 1970; Granier, 1985).

The corresponding slip along the fault is:

Dux � 2Dt
G
�1ÿ n�

" ����������������
a2 ÿ x2
p

ÿ 1

p

 ����������������
a2 ÿ x2
p

ÿ x2

a
coshÿ1

a

jxj

!#
:

�11b�

The absolute value sign in Eq. (11b) remedies an error
of Tada et al. (1973) that carried over to Eq. (14) of
BuÈ rgmann et al. (1994). The slip distribution for this
theoretical case (Fig. 5b) resembles the elliptical distri-
bution for a uniform stress drop but is more peaked.

Appendix A shows that in general the deformed geo-
metry of an isolated, initially planar fault is directly re-
lated to the stress drop distribution. For a uniform,
isotropic, isothermal host rock, if the stress drop varies
as position (x/a ) along a fault raised to the zero power
(i.e. the stress drop is piecewise constant), then the
fault-normal displacement varies as the position to the
®rst power. The fault rotates but does not become
curved. Where the stress drop varies as (x/a )1 (i.e. the
stress drop is piecewise linear), the fault-normal displa-
cement varies as (x/a )2. Here the fault rotates and
becomes curved. As shown in Appendix A, a simple
quantitative rule applies: where Dt varies as (x/a )n,
then uy along the fault varies as (x/a )n+1. Appendix A
also shows that the curvature of an initially planar
fault provides a direct measure of the rate of change
of shear stress drop along the fault.

The ®ndings here focus on two sets of ®eld
examples. First, the faults with `horsetail fractures'
illustrated by Granier (1985) have traces that are rela-
tively straight in the middle but that curve near their
ends in the manner of Fig. 5(a). If the resistance to
slip were fairly uniform near the middles of these
faults, then their traces should be straight there.
Theoretical considerations indicate that the resistance
to slip should increase signi®cantly near the fault ends
(Martel, 1997). The curvature documented by Granier
(1985) indicates that the resistance to slip increased sig-
ni®cantly towards the fault ends in a continuous man-
ner. If the resistance to slip had increased in a stepped
manner, then the ends should be kinked rather than
curved (see Martel, 1997). If the resistance to slip had
diminished towards the ends, then ends should curve
in the opposite sense. Second, Figs. 3(a) and 5(a) show
that if the stress drop along the faults of Fig. 1 were
greatest near the dike that a right-lateral kink would
be produced along the left-lateral faults near the dike.

Fig. 5. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) for a symmetric piecewise linear shear stress

drop. The shear stress drop is Dt � k�1ÿ jx=aj�.

S.J. Martel / Journal of Structural Geology 21 (1999) 585±596590



5. Interaction of faults

The mechanical interaction of faults also can in¯u-
ence the geometry of fault arrays. E�ects of fault inter-
action are illustrated using two examples: (1) two
parallel coplanar faults (Fig. 6), and (2) a stacked
array of parallel faults (Fig. 7). The former example
could represent unconnected faults on opposite sides
of a dike, and the latter example an array of initially
unkinked faults (Fig. 1). These cases were examined
using the boundary element method. In analyses of
both scenarios the stress drop was taken to be uniform
along the entire length of the faults.

5.1. Coplanar faults

In the analysis of coplanar faults, the length of each
fault is 2l and the length of the two-fault array is 2a.
In Fig. 6, l � 0:99a. As the faults slip, both rotate in
the same sense as an isolated fault (Fig. 6a). As a
result, the neighboring tips of the faults rotate away
from each other to yield an eÂ chelon pattern. Right-

lateral slip yields a right step between the faults; left-
lateral slip yields a left step. Interestingly, both options
yield a dilational jog. The rotation of coplanar faults
does not yield a step of the sense necessary to account
for the fault geometry of Fig. 1.

A series of trials with di�erent fault spacings show
that both faults remain planar as they rotate.
Furthermore, both rotate to the same orientation as a
single fault that experiences the same stress drop. The
relative displacement dy of the facing fault tips thus
depends on the length of the individual faults but not
on the original gap between them. Whereas
uy � l�tan o �, Eq. (5) shows that

jdyj � jDtj
G
�1ÿ 2n�l: �12�

For two 10 km-long faults with shear stress drops of
10 MPa, and a host rock with a shear modulus of 3�
104 MPa and a Poisson's ratio of 0.25, dy would be
0.8 m. A pupative eÂ chelon step of this size could be
produced in just one earthquake.

The slip maximum on each fault is shifted from its
center towards the rock bridge between the faults (Fig.
6b). A skewed slip distribution thus arises along a

Fig. 6. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) for two coplanar faults each of half-length

l � 0:99a separated by a gap of 0.04a. The slip at the fault tips at

x �20:02a is zero.

Fig. 7. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) for the central fault in an array of `stacked'

faults.
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fault with a straight trace. The slip gradient is steepest
near the neighboring tips, so secondary fractures
would be most likely to develop there (Martel, 1997).
Because a dilational jog is produced, the secondary
fractures are especially likely to link the faults if they
are spaced close enough. Once the faults have rotated,
they could not link if they propagated in-plane.

5.2. Array of stacked faults

The model of an array of stacked faults contains
®ve parallel faults (Fig. 7a inset). The central fault is
ten times longer than the other four faults. The spa-
cing between faults is half the length of the short
faults. In the boundary element calculations, shear and
normal stress drops were prescribed along the fault
faces, with a unit shear stress drop and a normal stress
drop of zero. These boundary conditions require the
walls of the faults to slip, but they also permit the
walls to open and to interpenetrate. Opening displace-
ments are physically possible, but interpenetrations are
not. To minimize interpenetration, the centers of the
short faults are set along the perpendicular bisector to
the long fault. Slip along the faults causes no change
in the normal stress along that line and only small
changes a short distance from it. The issue of inter-
penetration did not arise for the coplanar faults
because slip causes no change in the normal stress act-
ing across the plane of the faults.

Fig. 7(a) shows that a kink develops on the long
fault, with the sense of kinking conjugate to the sense
of slip. A conjugate kink arises because the central
portion of the long fault rotates more than the fault as
a whole. This extra rotation re¯ects the in¯uence of
the neighboring small faults, which rotate in the same
sense as the long fault. The resulting kink is qualitat-
ively consistent with that of Fig. 1.

The magnitude of slip along the main fault di�ers
little from that of an isolated fault (Fig. 7b). A small
decrease in slip occurs near the middle of the main
fault. This re¯ects a sharing of slip with the neighbor-
ing small faults. The decrease in slip corresponds to a
conjugate kink.

6. E�ects of host rock heterogeneity

The last set of examples address how variation in
Young's modulus a�ects the shape of a fault. Rocks
show a surprisingly wide range in this elastic par-
ameter. The values of Young's modulus tabulated by
Hatheway and Kiersch (1989) range by about an order
of magnitude for igneous rocks, two orders of magni-
tude for metamorphic rocks, and three orders of mag-
nitude for sedimentary rocks. In keeping with the prior

analyses only the displacements associated with slip
are considered here.

Heterogeneities in the form of the ®nite inclusions of
BuÈ rgmann et al. (1994) are examined here.
Rectangular inclusions of di�erent moduli are set at
three positions: past a fault end (Fig. 8), along a fault
end (Fig. 9), and at a fault middle (Fig. 10). The last
example could represent a fault cutting through a dike
(e.g. Fig. 1). The long edge of the inclusion is normal
to the fault. Three di�erent ratios of inclusion modulus
to host modulus, Ei/Eh, are examined: 10:1, 1:1, and
1:10. The case of Ei=Eh � 1 re¯ects no di�erence in
moduli and thus represents the reference case of a uni-
form medium. In each case Poisson's ratio of the host
and the inclusion is set to 0.25. The calculations were
done using a version of the boundary element code
TWODD (Crouch and Star®eld, 1983) modi®ed to
account for heterogeneous media. Displacements are
required to be continuous across the interface between
the host and the inclusion. In all cases here the shear
stress drop along the fault is uniform.

Figs. 8(a), 9(a) and 10(a) show fault-normal displace-
ment pro®les. For Ei=Eh � 1, the uy pro®le is very
close to straight. The rotation of the fault is nearly
uniform; small deviations re¯ect small artifacts in the

Fig. 8. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) for a fault that terminates against an inclusion.
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numerical solution. For other ratios the pro®le is a
complicated curve. Where the fault cuts materials of
di�erent moduli, the maximum curvature and the most
complicated slip distribution occur in the more compli-
ant material. For these examples, fault de¯ection tends
to increase (relative to the reference case) towards a
more compliant inclusion and decrease towards a more
rigid inclusion. Cusps develop in the fault shape pro-
®les at the contact between compliant and sti� ma-
terials. The sense of curvature is the same on opposite
sides of the contact, but the sign of the pro®le slope
changes. Many geologists have recognized that a fault
a�ects its host rock; the results here show that the
host rock also will a�ect the fault.

Figs. 8(b), 9(b) and 10(b) show the slip distributions
corresponding to the respective fault-normal displace-
ment distributions. The slip pro®les here di�er slightly
from those of BuÈ rgmann et al. (1994) because those
analyses were conducted with a Poisson's ratio of 0
instead of 0.25. For Ei=Eh � 1, the slip pro®les are
elliptical. A sti� inclusion (Ei=Eh � 10) reduces the slip
everywhere along the fault relative to the reference
case. The slip drops most where the fault cuts the in-
clusion (Figs. 9b and 10b) or, if the fault does not cut
the inclusion, where it approaches the inclusion (Fig.

8b). For a compliant inclusion (Ei=Eh � 0:1) the slip
increases.

For a fault that cuts through a thin inclusion (Fig.
10a), neither a sti� nor a compliant inclusion yields a
de¯ection pro®le that closely resembles the kink geo-
metry of Fig. 1. The geometry of that kink thus is
more likely to result from either a low fault strength at
the dike or a stacked array of closely spaced faults
rather than a modulus contrast between the dike and
the host rock.

7. Discussion and conclusions

The main purpose of this paper is to show that
many conditions can cause the geometry of a fault to
become distorted as it slips. Conditions include vari-
ations in friction, fault strength, fault interaction, and
material heterogeneity. Because these sorts of heteroge-
neities are inherent in the Earth, faults must deform as
they slip, even for faults that were initially planar.
Fault shape changes should occur on faults of all
scales. On a fault of given length, shape changes will

Fig. 9. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) along a fault that extends into an inclusion.

Fig. 10. Pro®les of normalized (a) fault-normal displacement and (b)

slip vs position (x/a ) along a fault that cuts an inclusion at the fault

center.
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increase as slip increases. Even if a strike-slip fault
were to propagate as a shear fracture, it would be

unable to remain planar if the resistance to slip

increased near its ends. Shape changes due to slip will
occur in addition to those resulting from linkage of

non-coplanar fault segments and non-uniform tectonic
deformation. Although elastic e�ects can initiate cur-

vature of a fault, non-elastic e�ects might be more im-

portant in determining its ultimate shape if they
amplify the curvature.

A second key point is that fault shape can be used

to illuminate the mechanics of faulting, especially if

used in conjunction with data on slip distribution,
fault strength, and host rock properties. Fault shape,

slip distribution, and rock properties are inter-related.
If two of these parameters are known, constraints can

be placed on the third. Inverse techniques used to infer

slip at depth along a fault (e.g. Harris and Segall,
1987) require information on fault shape and rock

properties. The results here indicate that information
on fault shape and slip distribution could be used to

infer rock properties. Additionally, analyses of fault
geometry might be useful in inferring slip along faults

in homogeneous rocks on the sea¯oor, on other pla-

nets (e.g. Schultz, 1989), or on land where distinct
markers for measuring slip are scarce.

Fig. 5 shows that grossly similar slip distributions
can result for faults where the stress drop distributions

are distinctly di�erent. In contrast, a curved fault trace
commonly can be distinguished from a straight one.

This implies that in some cases fault shape could be
analyzed more fruitfully than slip distribution to

understand the stress drop distribution or strength

variation along a fault. Fault shape data could also
provide insight into the stress drops during slip along

a fault when slip distribution data are lacking.

Fault shape and fault slip provide fundamentally

di�erent but complementary information on fault
mechanics, and speci®cally on the stress drop during

slip. In uniform isotropic rock, the slip at a point
depends on the integrated e�ect of stress drops along

the entire fault, whereas the curvature reveals details

of how the stress drop varies with position along the
fault. This result indicates that fault geometry is sensi-

tive to the manner in which stresses change along a
fault, perhaps more sensitive than the slip distribution

is.

The theoretical ®ndings here can be exploited by

using geologic maps to relate fault shape, slip distri-
bution, and rock types along faults. Also, fault-normal

displacements identi®ed by geodetic techniques such as

GPS (Hudnut et al., 1994) or radar interferometry
(Massonnet et al., 1993) could be used to investigate

the variation in shear stress drop along a fault during
an earthquake.
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Appendix A

As indicated by Eq. (1a), the fault-normal displace-
ment along the walls of a mode II fault is proportional
to value of the real component of the complex stress
function �Z .

uy � c1 Re �Z , �A1�
where c1 � ÿ�1ÿ 2n�=2G. Eq. (A1) can be solved for
Re �Z

Re �Z � uy

c1
: �A2�

The change in shear stress (Dt ) along the walls of
the fault depends on a second complex stress function
Z (Tada et al., 1973; Martel, 1997):

Dt � Re Z �A3�
where Z is the derivative of �Z :

Z � d �Z

dz
: �A4�

The term z equals x� iy. Along the walls of the fault
y � 0, so z � x. Whereas dz � dx, Eqs. (A3) and (A4)
yield:

Dt � Re
d �Z

dx
: �A5�

Substituting Eq. (A2) into Eq. (A5) yields a surpris-
ingly simple relationship between Dt and uy:

Dt � 1

c1

duy

dx
: �A6�

The shear stress drop at a point along the fault is thus
proportional to the rate of change of fault-normal dis-
placement along the fault. As a result, if uy varies as
x n+1, then Dt will vary as x n. Eq. (8.34a) of Pollard
and Segall (1987) re¯ects a special case of Eq. (A5).

The curvature magnitude K of an initially planar
fault is given by the following expression (e.g.
Leithold, 1976):
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K �

����d2uy
dx2

����"
1�

�
duy

dx

�2
#3=2

: �A7�

For faults that undergo small rotations as they slip,
the derivative term in the denominator of Eq. (A7) is
tiny. This allows the curvature magnitude to be
expressed in a simpler form:

K1
����d2uy

dx2

����: �A8�

A comparison of Eqs. (A6) and (A8) shows that the
magnitude of curvature at a point along a fault is pro-
portional to the rate of change of shear stress along
the fault:

K1c1

����d�Dt�dx

����: �A9�

The slip along a fault and the curvature of the fault
reveal two di�erent but related aspects of the mech-
anics of faulting. Eq. (1a) shows that the slip along a
fault Dux is proportional to the imaginary part of �Z :

Dux � 2
�1ÿ n�

G
Im �Z : �A10�

This can be recast in the following forms:

Dux � 2
�1ÿ n�

G

��a
ÿa

d�Im �Z �
dz

dz, �A11�

or, using Eq. (A4), as

Dux � 2
�1ÿ n�

G

��a
ÿa

Im Z dz: �A12�

The slip is then proportional to the integral of Z, and
Eq. (A3) shows that Z is proportional to the stress
drop. The slip at a point thus depends on the integral
of the stress drop along the entire fault. In contrast,
Eq. (A9) shows that the curvature at a point along a
fault scales with the rate of change of the stress drop
at that point. Simply put, fault slip re¯ects largely a
weighted average of the stress drop, whereas fault cur-
vature reveals how the stress drop varies spatially.
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